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Abstract

Background: Platelet-derived growth factor (PDGF) signalling is essential for many key cellular processes in
mesenchymal cells. As there is redundancy in signalling between the five PDGF ligand isoforms and three PDGF

receptor isoforms, and deletion of either of the receptors in vivo produces an embryonic lethal phenotype, it is not
know which ligand and receptor combinations mediate specific cellular functions. Fibroblasts are key mediators in
wound healing and tissues repair. Recent clinical trials using broad spectrum tyrosine kinase inhibitors in fibrotic
diseases have highlighted the need to further examine the specific cellular roles each of the tyrosine kinases plays
in fibrotic processes. In this study, we used PDGFR-specific neutralising antibodies to dissect out receptor-specific
signalling events in fibroblasts in vitro, to further understand key cellular processes involved in wound healing and

tissue repair.

cellular events.

Results: Neutralising antibodies against PDGFRs were shown to block signalling through PDGFRa and PDGFR3
receptors, reduce human PDGF-AA and PDGF-BB-induced collagen gel remodelling in dermal fibroblasts, and
reduce migration stimulated by all PDGF ligands in human dermal and lung fibroblasts.

Conclusions: PDGFRa and PDGFR{ neutralising antibodies can be a useful tool in studying PDGFR isoform-specific

Background

Platelet-derived growth factors (PDGFs) acting via their
tyrosine kinase receptors are major mitogens for many
cell types of mesenchymal origin, including fibroblasts
and vascular smooth muscle cells (VSMCs) [1-4]. Their
role in enhancing migratory and proliferative responses
and extracellular matrix (ECM) synthesis in these cells
makes them key regulators of critical biological and
pathological functions including tissue remodelling, scar-
ring and fibrosis. Two PDGF receptor (PDGFR) isoforms
(PDGFRa and PDGFRp) form three different dimeric re-
ceptors — aa, PP and of [5,6]. These receptors can inter-
act with five different dimeric PDGF ligands: PDGF-AA,
PDGE-BB, PDGF-CC, PDGF-DD and PDGF-AB [7-11],
with different specificities and efficacies [12] (Figure 1).
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While PDGF ligands have considerable overlap in their
cellular signalling, individual ligands have also been found
to control, or are dominant in, specific cellular events.
PDGF-AA is a potent mitogen for cardiac fibroblasts and
has been shown to be critical in lung alveolar myofibroblast
development and alveogenesis [13,14]. PDGF-BB is re-
quired in the ontogeny of kidney mesangial cells and has
been shown to be essential for development of the vascula-
ture and vascular integrity [15]. PDGF-CC has been impli-
cated in all phases of wound healing while blockade of
PDGE-CC signalling inhibits pathological angiogenesis by
acting on multiple cellular and molecular targets [16].
PDGE-DD is thought to stimulate angiogenesis and depos-
ition of ECM and to be involved in hepatic and renal
fibrosis [17]. It is also thought to be involved in VSMC
phenotypic modulation and is upregulated in endothelial
cells exposed to atherosclerosis-prone flow patterns [18].

In vitro, PDGER isoforms have been shown to be potent
activators of fibroblast proliferation, migration and sur-
vival [10]. Although stimulation of PDGFRa and PDGFRf
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Figure 1 Schematic diagram showing PDGFR-PDGF interactions in vitro: PDGF ligand dimers bind either PDGFRa or PDGFR(
homodimers or the a/B heterodimer. Arrows show proven in vitro ligand-receptor interactions. Each PDGF receptor has five extracellular
immunoglobulin-like domains and two intracellular tyrosine kinase domains. PDGFR chains are shown in blue (PDGFRa) and red (PDGFRR).
PDGF ligands are shown in green (PDGF-A), yellow (PDGF-B), orange (PDGF-C) and purple (PDGF-D).

evokes similar signal transduction cascades, in vitro stud-
ies suggest distinct requirements for specific pathways to
initiate particular receptor-mediated functions. For ex-
ample, while activation of both receptors evoke mitogenic
signals, stimulation of PDGFRa inhibits chemotaxis of fi-
broblasts and smooth muscle cells; in contrast, PDGFRP
activation potently stimulates fibroblast chemotaxis [9,19].

Recent studies have attempted to dissect PDGFR-
specific events using genetically defined mouse embry-
onic fibroblasts (MEFS) expressing PDGFRa, PDGFRp,
both or neither [20]. These cells were generated by
transducing PDGFRP-/- cells with retroviral expres-
sion vectors for PDGFRa, PDGERp or both. Microarray
gene expression array analysis provided some interest-
ing insights. No genes were differentially expressed in
the double null cells, suggesting minimal receptor-
independent signalling. Whilst there is considerable
overlap between PDGFRa and PDGERp signalling, this
study identified transcripts that were differentially
expressed between the cell lines. Thirty-three gene sets
(functional groups of genes) were activated by PDGFRa
only and 15 genes sets by PDGFRp only. Interestingly,
25 genes sets were specifically activated by the hete-
rodimeric receptors, for example, PDGFRa/p-activated
components of the NFkB and interleukin (IL)-6 path-
ways, PDGFRa-activated C21-steroid hormone bio-
synthesis, and PDGFRp activated the angiogenesis and
epidermal growth factor receptor (EGFR) signalling
pathways. The PDGFRa null cell line but not the
PDGERP null or wild type (WT) showed differential

expression of guanosine diphosphate (GDP) signalling
genes [20]. Conversely, the differentially expressed gene
sets particular to the PDGFRp null and WT cell lines
characterise ketosteroid metabolism [20]. Whilst these
types of studies provide a reasonable genetic character-
isation, they supply very little functional information,
especially given that MEFs do not necessarily reflect
the behaviour of adult fibroblasts.

Inhibition of both PDGFRs by broad-spectrum tyrosine
kinase inhibitors such as Gleevec (which also inhibits
c-Abl, c-kit and VEGFR) is used in the treatment of
gastrointestinal stromal tumours and chronic mylogenous
leukaemia [21-23]. They have been shown to reduce pro-
liferation of normal mesangial cells via reduction in
STAT3 phosphorylation [24] and of fibroblasts via reduc-
tion in PDGFRp phosphorylation [25]. Gleevec treatment
has also been shown to reduce the synthesis of ECM pro-
teins in a model of dermal fibrosis [26]. These data suggest
that PDGER is regarded as a key molecular target in the
development of anti-fibrotic therapies.

Taken together, these in vitro studies implicate
PDGER signalling in fibroblast function during tissue
repair and scarring, however, questions still remain re-
garding the underlying mechanism(s) and specificity of
PDGF ligand-receptor function. In this report, we used
PDGER-specific neutralising antibodies to block signal-
ling through either PDGFRa or PDGFRP to dissect out
receptor-specific signalling events in vitro. We also ana-
lyse the role of the receptors on fibroblast migration
and collagen gel contraction.
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Results

Phosphorylation of PDGFR by PDGFAA, BB, CC and DD

In order to establish the pattern of phosphorylation of
PDGEFRs with the various PDGF ligands in human dermal
fibroblasts, cells were serum-starved overnight and stimu-
lated with PDGF-AA, PDGF-BB, PDGF-CC, PDGF-DD
(20 ng/ml) or 10% FCS, or maintained in 0% FCS for 15
min. Western blots of total cell protein were probed with
antibodies against phospho-PDGFRa, PDGFRa, phospho-
PDGFRpB, PDGFRB and GAPDH as a loading control
(Figure 2a). Phosphorylation of PDGFRa was observed
when cells were stimulated with PDGF-BB, PDGF-DD
and, to a lesser extent, PDGF-AA. There was no detect-
able phosphorylation of PDGFRa when stimulated with
PDGE-CC. Phosphorylation of PDGFRB was observed
after stimulation with PDGF-BB and PDGF-DD. A similar
phosphorylation pattern of PDGFRp is observed in lung fi-
broblasts when stimulated with PDGF-AA, PDGF-BB and
PDGE-DD (Figure 2b). However, phosphorylation of
PDGFRa was observed when cells were stimulated with
all with PDGF ligands in lung fibroblasts.

To ascertain if skin fibroblast PDGFRs were phosphory-
lated at higher doses of PDGF-CC and PDGF-AA, cells
were stimulated with various concentrations of PDGF-AA
or PDGF-CC (0-200 ng/ml). Western blots of total cell
protein were probed with antibodies against phospho-
PDGFRa, phospho-PDGFRp and GAPDH as a loading con-
trol (Figure 3). Phosphorylation of PDGFRa was observed
upon stimulation with PDGF-AA at doses 5-200 ng/ml.
PDGFRa was phosphorylated moderately at 50 ng/ml and
more strongly above 100 ng/ml by PDGF-CC. Phospho-
rylation of PDGFRP was observed at a low level when
stimulated with PDGF-AA at doses 50-200 ng/ml. No
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Figure 3 Phosphorylation of PDGFRa and PDGFR@ in response
different doses of PDGF-AA and PDGF-CC ligands. Dermal
fibroblasts were grown in 10% FCS and serum-starved overnight.
Cells were stimulated with 0% FCS, PDGF-BB, PDGF-AA (5-200ng/ml)
and PDGF-CC (5-200ng/ml) for 15 min. Whole cell lysates were
Western blotted using antibodies against phospho-PDGFRa,
phospho-PDGFRB and GAPDH (loading control).
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phosphorylation of PDGERP was detected after treatment
with PDGF-CC.

Effect of blocking antibody on phosphorylation and
signal transduction

Human dermal fibroblasts were treated with PDGFRa or
PDGERP neutralising antibodies and stimulated with
PDGF-AA or PDGFR-BB ligands. Western blot analysis
shows that the expression of total PDGFRa, PDGFRP and
ERK is similar across all treatment groups (Figure 4a).
Phosphorylation of PDGFRa is observed when cells are
stimulated with PDGF-AA or PDGEF-BB alone and when
treated with neutralising antibodies against PDGFRa and
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Figure 2 Phosphorylation of PDGFRa and PDGFR@ in response to PDGF ligands. Dermal fibroblasts (a) and lung fibroblasts (b) were grown
in 10% FCS and serum-starved overnight or kept in 10% FCS. Cells were then stimulated with either 10% FCS, 0% FCS, PDGF-AA, PDGF-BB,
PDGF-DD or Imatinib for 15 min. Whole cell lysate were Western blotted using antibodies against phospho-PDGFRa, PDGFRa, phospho-PDGFRB,
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stimulated with PDGF-BB or with anti-PDGFRp stimu-
lated with either PDGF-AA or PDGEF-BB. Phosphorylation
of PDGFRa was not observed when cells were treated with
either neutralising antibody alone or when treated with
anti-PDGFRa and stimulated with the PDGFRa-specific
ligand, PDGE-AA. Phosphorylation of PDGFRf was ob-
served when cells were stimulated with the universal
PDGEF ligand, PDGF-BB only and when treated with anti-
PDGFRa and stimulated with PDGF-BB. Both receptors
show enhanced phosphorylation in response to PDGF-BB
compared to PDGF-AA (pPDGFRa 7-fold difference be-
tween PDGF-AA and PDGF-BB stimulation, PDGFRp
700-fold difference between PDGF-AA and PDGF-BB
stimulation) (Figure 4b-c). Phosphorylation of ERK is re-
duced in cells treated with anti-PDGFRa compared to
controls (Figure 4a), but not when treated with anti-
PDGERP. The PDGF receptor neutralising antibodies were
also observed to block phosphorylation of their respective
homodimer receptors in lung fibroblasts (Figure 4d-f).
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Phosphorylation of ERK was observed with most
treatments.

Effects of PDGFR neutralising antibodies on collagen gel
contraction

To analyse the effect of PDGER neutralising antibodies on
the ability of fibroblasts to contract collagen gels, dermal
fibroblasts were treated with anti-PDGFR neutralising
antibodies prior to embedding in collagen gels. The gels
were then incubated in medium containing PDGF-AA,
PDGE-BB or a 0% serum (control) for 24 h. The gel diam-
eter was measured and gels weighed. Both PDGF-AA and
PDGE-BB significantly induced collagen gel contraction in
human dermal fibroblasts compared to 0% FCS (Figure 5)
(p = 0.004 and p = 0.032 respectively). A similar effect was
observed in gels where the cells were treated with anti-
PDGFRa and stimulated with PDGF-BB (p = 0.031) or
anti-PDGFRP and stimulated with either PDGF-AA or
PDGEF-BB (p = 0.035 and p = 0.0007) compared to control.
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Figure 4 Western blot showing effects of PDGFRa and PDGFRp neutralising antibodies. (a) Dermal fibroblasts were treated with
neutralising antibodies to anit-PDGFRa, anti-PDGFR or vehicle for 1 h at room temperature and then stimulated with either PDGF-AA or
PDGF-BB or vehicle for 15 min. Cells were then washed in ice-cold PBS and lysed. Cell lysates were Western blotted for PDGFRa, pPDGFRa,
PDGFRB, pPDGFRB, ERK, pERK and GAPDH. The relative amount of pPDGFRa, pPDGFRB, as measure by densitometry, is shown in (b) and (c).
(d) Lung fibroblasts were treated and analysed in the same manner (e) and (f).
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Figure 5 The effect of collagen gel contraction of dermal
fibroblasts after treatment with PDGFRa and PDGFR
neutralising antibodies. Dermal fibroblasts were treated with
neutralising antibodies to anti-PDGFRa, anti-PDGFRp or blank for 1 h
at room temperature and were added to a collagen gel. The gels
were then grown in media containing either PDGF-AA or PDGF-BB.
After 24 h the gels were weighed to assess contraction. Error bars
are standard error of the mean. Two-sample T-test statistical analysis
was performed compared to compared gel weights compared to
the 0% FCS control p = 0.004 PDGF-AA, p = 0.032 PDGF-BB, p = 0.82
anti-PDGFR-a., p = 0.62 anti-PDGFR-a.+ PDGF-AA, p = 0.03 anti-
PDGFR-a+ PDGF-BB, p = 0.77 anti-PDGFR-3, p = 0.035 anti-PDGFR-3 +
PDGF-AA, p = 00007 anti-PDGFR-$ + PDGF-BB. *p > 0.05.

However, treatment with anti-PDGFRa completely blocked
contraction induced by the PDGFRa-specific ligand PDGEF-
AA (p = 0.62). Treatment with either antibody alone had
no effect on collagen gel contraction.

Effect of PDGFR neutralising antibodies on fibroblast
migration

To investigate the effect PDGFR-neutralising antibodies
on PDGF-mediated migration, a scratch wound assay
was performed in dermal and lung fibroblasts. Cells were
cultured in the presence of anti-proliferative agent, mito-
mycin C, treated with PDGFR-neutralising antibodies
and stimulated with PDGF ligands. After 24 h, the mean
density of cells in the scratched area was calculated and
normalised against the migration induced by growth fac-
tor alone (Figure 6). Cells incubated in serum-free media
containing only mitomycin C migrated the least com-
pared to 10% FBS (p = 0.032 10% FCS vs. Media + mito-
mycin C) (Figure 6b). Similarly, a control IgG did not
appear to have any effect on cell migration when used to
pre-treat cells (p = 0.035 10% FCS vs. IgG treated); how-
ever, when stimulated with PDGF-BB, cells migrated to a
greater extent (50% compared to 10% FCS). When cells
were treated with both the anti-PDGFRa and anti-
PDGERp neutralising antibodies or tyrosine kinase in-
hibitor, Imatinib, cell migration was reduced and did not
increase significantly when stimulated with PDGF-BB
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(p = 092 anti-PDGFRa + anti-PDGFRp vs. anti-
PDGFRa + anti-PDGFRP + PDGEF-BB and p = 0.1
Imatinib vs. Imatinib + PDGF-BB) (Figure 6b). Whilst
both PDGEFR neutralising antibodies had an effect in redu-
cing PDGF-induced migration, anti-PDGFRa had the
greatest effect in abrogating PDGF-AA-stimulated migra-
tion compared to the ligand only control (55% migration)
(p = 0.24 anti-PDGFRa + PDGF-AA vs. PDGF-AA, p =
0.93 anti-PDGFRP + PDGF-AA vs. PDGF-AA) (Figure 6¢).
Anti-PDGEFRp was observed to have the greatest effect on
reducing migration stimulated by PDGF-BB (45% com-
pared to 50% when pre-incubated with anti-PDGFRa)
(p = 0.006 anti-PDGFRP + PDGF-BB vs. PDGF-BB,
p = 024 anti-PDGFRa + PDGF-BB vs. PDGF-BB). Simi-
larly, both PDGEF-CC (55% compared to 80% when pre-
incubated with anti-PDGFRa) and PDGF-DD-mediated
cell migration were abrogated most effectively by
treatment with anti-PDGFRP (70% compared to 80%
when pre-incubated with anti-PDGFRa) (p = 0.06 anti-
PDGFRB + PDGF-CC vs. PDGF-CC, p = 0.34 anti-
PDGFRa + PDGE-CC vs. PDGF-, p = 0.38 anti-PDGERp +
PDGE-DD vs. PDGF-DD, p = 0.64 anti-PDGFRa + PDGEF-
DD vs. PDGEF-DD) (Figures 6d-f). This pattern is also ob-
served in lung fibroblasts (Figure 6g-k). These data show
that treating cells with neutralising antibodies against
PDGFRa and PDGERp appears to slow the rate of cell
migration and there is a synergistic inhibitory effect on the
two antibodies.

Discussion

Fibroblasts play a critical role in wound healing and tis-
sue repair [2]. Signalling through the PDGF/PDGER axis
is a key feature of enhanced migration and ECM synthe-
sis and are required for correct wound healing [1]. How-
ever, dysregulated activity and function of PDGFs are
also believed to be important determinants of human
diseases including excessive dermal scarring, many
forms of organ-based tissue fibrosis as well as vascular
diseases such as atherosclerosis and pulmonary hyper-
tension [27]. It remains to be established whether a par-
ticular combination of PDGF/PDGER is implicated in
promoting certain disease pathologies.

The phosphorylation pattern of PDGFRa and PDGFRf
in response to PDGF-ligand stimulation observed in this
study is similar to that previously reported [28-31]. Whilst
it is firmly established that PDGF-AA is most specific for
PDGEFRa«a in vitro, reports vary as to whether phosphoryl-
ation of PDGFRs in response to PDGF-DD stimulation is
PDGEFRp-specific or also stimulates PDGFRa [11,32]. Our
studies indicated that in primary human dermal fibroblasts
PDGE-DD stimulates PDGFRa and PDGFRp to a similar
extent, consistent with the findings of LaRochelle et al
[32]. However, a similar pattern of PDGFRa phosphoryl-
ation is not observed in lung fibroblasts. Phosphorylation
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of PDGFRa does not appear to have the same ligand spe-
cificity as dermal fibroblasts and was shown to be stimu-
lated by all PDGF ligands. This tissue-specific difference in
PDGER stimulation is a previously unreported finding and
a subject of further investigation.

As deletion of either PDGFR in vivo produces an em-
bryonic lethal phenotype, it is difficult to assess the roles
of the individual PDGF receptors [33-35]. Much of the
previous in vivo work is therefore focused on the contri-
bution of PDGEFR in embryonic development. However,

some conditional models also exist and work on these
models is becoming increasingly prevalent [36].
Similarly, in vitro it has been difficult to dissect out
receptor-specific signalling pathways as PDGFRs are
reported to have redundancy and display compensatory
effects [20]. Previous work by Wu et al. used specific
PDGER knockout cell lines created by generating MEFS
from double knockout mice, then transducing retroviral
PDGFRa or PDGFRp vectors into the cells to express
one or other of the proteins [20]. However, these
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analyses must be interpreted with caution as MEFS do
not reflect adult fibroblast function and behaviour. Stud-
ies that examine the effect of specific point mutations of
the PDGFRs in downstream signing pathways have been
useful in dissecting receptor-specific cellular events
[37-39]. However, they offer only limited insights in to
the overall function of the receptor. Conversely, small-
molecular inhibitors such as Gleevec are too broad in
their range of target molecules to define PDGFR-specific
cellular effects [22].

Ingram et al. have used PDGF-AA neutralising anti-
bodies to great effect in the study of cytokine involvement
in lung fibrosis [40]. In this report we investigate the use
of PDGEFR-specific neutralising antibodies in dissecting
out PDGFRa- and PDGFRp-specific events in functional
assays migration and collagen gel remodelling.

We show that neutralising antibodies against PDGFRa
and PDGFRpB block signalling through PDGFRa and
PDGERp receptors as expected. The phosphorylation of
each PDGEFR receptor was reduced when cells were treated
with specific anti-PDGFRa or anti-PDGFRp neutralising
antibodies. Similarly we have shown that the neutralising
antibodies abrogate the signal from PDGFRa in specific
downstream signalling cascades. This is best illustrated
in the reduction of pERK in response to anti-PDGFRa
neutralising antibodies in dermal fibroblasts (Figure 4). In
order to determine the efficacy of both the neutralising
antibodies, we previously analysed the phosphorylation of
their PDGFR-a or PDGFR-f receptors using different anti-
bodies raised against a number of different phosphoryl-
ation sites (PDGFR-a Y751 and Y1021, PDGER-f Y1018
and Y754) (data not shown). In each case we found that
both PDGFR-a and PDGFR- were not activated and were
henceforth satisfied that the neutralising antibodies had
abrogated normal signal transduction through the recep-
tors. However, stimulation of pERK was observed when
treated with anti-PDGFRp alone and in the presence of
PDGEF-AA and PDGE-BB ligands. Whilst Anti-PDGERp
has been previously reported to bind the receptor at a site
other than that of the ligand, and hence not stimulate the
receptor in the conventional manner, it may however
be acting as an auto-antibody. As phosphorylation of
PDGEFRP was not observed in our measurements, it may
be that the signal transduction pathway that mediates the
phosphorylation of ERK may be acting through a different
phosphorylation site on the PDGFRp receptor. We have
similarly observed a reduction in pAkt in the presence of
anti-PDGFR neutralising antibodies compared to stimula-
tion with PDGF-AA and PDGEF-BB ligand in both skin
and lung fibroblasts (data not shown). We do not observe
significant activation of the receptor above the levels of
the ligand alone in lung fibroblasts. The presence of auto-
antibodies that stimulate PDGERs has previously been
reported by Baroni et al [41]. We suggest that the
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neutralisation effect might be limited to actions mediated
by specific phosphorylation sites on the PDGFR}.

We also show that PDGFR-neutralising antibodies re-
duce PDGEF-induced collagen gel remodelling and PDGE-
mediated migration in a manner that reflects known,
well-established receptor/ligand specificities (Figure 1). The
role of PDGF in cell migration has long been established
[4,11]. However, much of the current research has used the
universal PDGF ligand (PDGEF-BB) when examining the
role of PDGF signalling in migration. The extent of dermal
fibroblast migration under the various conditions investi-
gated here is in accordance with the known receptor/ligand
specificities. This supports the findings of Gao et al. who
also showed that depletion of PDGFRp in dermal fibro-
blasts results in decreased migration and therefore validates
the use of neutralising antibodies as a method of dissecting
PDGFR-specific events [36].

The anti-PDGFRa and anti-PDGFRp antibodies bind at
a different site on the receptors to that of the ligands and
henceforth do not act in a competitive manner. As a con-
sequence of this, it appears as though the neutralising
antibodies do not block signalling through the PDGFRa/
PDGERp heterodimer as phosphorylation of the PDGFRa
receptor was still observed when cells were treated with
anti-PDGFRa and stimulated with the universal PDGF lig-
and, PDGE-BB. This is difficult to prove for the PDGFRp
in the context of this study as there is no PDGFRp-
specific ligand. This would obviously have to be taken into
consideration in any future studies as a potential caveat.
However, this does enable specific investigation of signal-
ling via PDGFR homodimers only.

Conclusions

Similarly to other deletion strategies, the use of neutral-
isation antibodies has caveats associated with the extent
and length of effect. However, this study has shown that
PDGFRa and PDGFRp neutralising antibodies can be a
useful tool in studying PDGEFR isoform-specific cellular
events.

Methods

Cell culture

Human dermal and lung fibroblasts were isolated and
cultured as previously described [42]. Cells were maintained
in Dulbecco’s-modified Eagle’s medium (DMEM; Life
Technologies Ltd., UK) supplemented with 10% foetal
bovine serum (Life Technologies), 100 U/ml penicillin and
100 mg/ml streptomycin (Life Technologies) and cultured
in a humidified atmosphere of 5% CO,. At confluence, cells
were passaged 1:4 using trypsin-EDTA (Life Technologies).

Treatment with neutralising antibodies
Cells were cultured in to 90% confluence in DMEM 10%
FBS and serum starved (DMEM 0% FBS) overnight.
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Neutralising antibodies to either PDGFRa or PDGFRp
(R&D Systems, UK) were added (10 pg/ml - NDsy 1-6
pg/ml based on the manufacturer’s guidelines) to the
cells in fresh serum-free media and incubated for 1 h at
room temperature. Cells were then stimulated with ve-
hicle, PDGF-AA, PDGF-DD, PDGF-CC (R&D Systems) or
PDGF-BB (Abcam UK), at various concentrations (0—200
ng/ml) for either 15 min for Western blot analysis or 24 h
for migration assays.

Western blot analysis

Cell layers were washed in ice-cold PBS and lysed in RIPA
buffer containing protease and phosphate inhibitors (Sigma
UK). Equal amounts of protein (20 pg) were subjected to
SDS/PAGE using 4-12% Bis Tris gels (Life Technologies).
Proteins were blotted onto nitrocellulose as previously
described [43], and proteins were detected using anti-
PDGEFRa, anti-PDGFRp, anti-GAPDH (Abcam, UK), anti-
phospho PDGFRa, anti-phospho PDGERp, (R&D Systems),
anti-ERK and anti-phospho ERK antibodies followed by an
appropriate  HRP-conjugated secondary antibody (Cell
Signalling, UK). Antibody binding was visualised Proteins
were detected using an enhanced chemiluminescence kit
(Amersham/GE Healthcare, UK).

Migration assay

Cells were plated in 96-well plates and cultured in DMEM
10% FBS to 100% confluency, then serum-starved over-
night. The cell layers were scratched using a 96 pin float-
ing array (V and P Scientific, USA) and washed 2x in PBS.
All media subsequently used were supplemented with mi-
tomycin C (5 ng/ml; Sigma) to block cell proliferation.
Cells were then treated with PDGFR neutralising anti-
bodies as described above, then stimulated with PDGE-
AA, PDGFR-BB, PDGF-CC, PDGF-DD (20 ng/ml) or
vehicle for 24 h and imaged using an Olympus CK2
microscope (Olympus, UK) and Ziess axiocam MR camera
(Carl Zeiss Ltd., UK). Mean density of cells that had
migrated into the scratched area was calculated using
Axio Vision software (Carl Zeiss Ltd.).

Remodelling of collagen matrices

Twenty-four-well plates were coated with 2% bovine
serum albumin (BSA) in PBS (2 ml/well) and incubated
at 37°C overnight. The plates were then washed 3x with
PBS. A collagen gel solution, consisting of one part
0.2 M N-2-hydroxyethylpiperazine-N’-2ethanesulphonic
acid (HEPES), pH 8.0, four parts collagen [3 mg/ml,
First Link (UK) Ltd., UK] and five parts DMEM was
prepared. Cells were treated with neutralising antibodies
against either PDGFRa or PDGFRp (10 pg/ml) at room
temperature for 1 h. A cell/collagen suspension was
made, with a final concentration of 80,000 cells/ml and
1.2 mg/ml collagen. The cell/collagen suspension (1 ml
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per well) was added to the plates and incubated at 37°C
to allow the collagen to polymerise. After 1 h, 1 ml of
DMEM containing PDGF-AA, PDGEFR-BB (20 ng/ml)
or no serum control was gently added to each well
resulting in detachment of the collagen gels from the
tissue culture plastic. After 24 h, gels were measured
and weighed as a measure of gel contraction [44].

Abbreviations

BSA: Bovine serum albumin; ECM: Extracellular matrix; EGFR: Epidermal
growth factor receptor; ERK: Extracellular signal-regulated kinase;

GDP: Guanosine diphosphate; HEPES: N-2-hydroxyethylpiperazine-N'-
2ethanesulphonic acid; NFkB: Nuclear factor kappa-light-chain-enhancer
of activated B cells; PDGF: Platelet- derived growth factor; PDGFR:
Platelet-derived growth factor receptor; pERK: Phospho extracellular
signal-regulated kinase; VEGFR: Vascular epidermal growth factor receptor;
VSMC: Vascular smooth muscle cell; WT: Wild type.

Competing interests
None of the authors have any competing interests.

Authors’ contributions

JD carried out the cell biology studies and drafting of the manuscript. XS
harvested the original cell line and carried out the collagen gel contraction
assay. JN participated in the design of the study and in drafting of the
manuscript. DA participated in the design of the study and in drafting of the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
The work was supported by Arthritis Research UK Grant 18420 and The
Rosetrees Trust.

Author details

'Centre for Rheumatology and Connective Tissue Diseases and Division of
Medicine, UCL Medical School, Royal Free Campus, London, UK. *Centre for
Nephrology, Division of Medicine, UCL Medical School, Royal Free Campus,
London, UK.

Received: 9 January 2013 Accepted: 5 April 2013
Published: 10 May 2013

References

1. Alvarez RH, Kantarjian HM, Cortes JE: Biology of platelet-derived growth
factor and its involvement in disease. Mayo Clin Proc 2006, 81(9):1241-57.

2. Andrae J, Gallini R, Betsholtz C: Role of platelet-derived growth factors in
physiology and medicine. Genes Dev 2008, 22(10):1276-312.

3. Grotendorst GR, et al: Platelet-derived growth factor is a chemoattractant
for vascular smooth muscle cells. J Cell Physiol 1982, 113(2):261-6.

4. Seppa H, et al- Platelet-derived growth factor in chemotactic for
fibroblasts. J Cell Biol 1982, 92(2):584-8.

5. Claesson-Welsh L, Ronnstrand L, Heldin CH: Biosynthesis and intracellular
transport of the receptor for platelet-derived growth factor.

Proc Natl Acad Sci U S A 1987, 84(24):8796-800.

6. Heldin CH, Ostman A, Ronnstrand L: Signal transduction via platelet-
derived growth factor receptors. Biochim Biophys Acta 1998,
1378(1):F79-113.

7. Raines EW, Ross R: Platelet-derived growth factor. I. High yield
purification and evidence for multiple forms. J Biol Chem 1982,
257(9):5154-60.

8. Deuel TF, et al: Human platelet-derived growth factor. Purification and
resolution into two active protein fractions. J Biol Chem 1981,
256(17):8896-9.

9. Heldin CH, Wasteson A, Westermark B: Platelet-derived growth factor.
Mol Cell Endocrinol 1985, 39(3):169-87.

10. Li X, et al. PDGF-C is a new protease-activated ligand for the PDGF
alpha-receptor. Nat Cell Biol 2000, 2(5):302-9.

11. Bergsten E, et al: PDGF-D is a specific, protease-activated ligand for the
PDGF beta-receptor. Nat Cell Biol 2001, 3(5):512-6.



Donovan et al. Fibrogenesis & Tissue Repair 2013, 6:10
http://www.fibrogenesis.com/content/6/1/10

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Donovan J, Abraham DA, Norman J: Platelet-derived growth factor
signalling in mesenchymal cells. Frontiers in Biosciences 2012.

Simm A, Nestler M, Hoppe V: PDGF-AA, a potent mitogen for cardiac
fibroblasts from adult rats. J Mol Cell Cardiol 1997, 29(1):357-68.

Bostrom H, et al: PDGF-A signaling is a critical event in lung alveolar
myofibroblast development and alveogenesis. Cell 1996, 85(6):863-73.
Hellstrom M, et al: Role of PDGF-B and PDGFR-beta in recruitment of
vascular smooth muscle cells and pericytes during embryonic blood
vessel formation in the mouse. Development 1999, 126(14):3047-55.

Hou X, et al: PDGF-CC blockade inhibits pathological angiogenesis by
acting on multiple cellular and molecular targets. Proc Natl Acad Sci U S A
2010, 107(27):12216-21.

Kumar A, et al: Platelet-derived growth factor-DD targeting arrests
pathological angiogenesis by modulating glycogen synthase kinase-3beta
phosphorylation. J Biol Chem 2010, 285(20):15500-10.

Thomas JA, et al: PDGF-DD, a novel mediator of smooth muscle cell
phenotypic modulation, is upregulated in endothelial cells exposed to
atherosclerosis-prone flow patterns. Am J Physiol Heart Circ Physiol 2009,
296(2):H442-52.

Heldin CH, Westermark B: Mechanism of action and in vivo role of
platelet-derived growth factor. Physiol Rev 1999, 79(4):1283-316.

Wu E, et al: Comprehensive dissection of PDGF-PDGFR signaling
pathways in PDGFR genetically defined cells. PLoS One 2008, 3(11):e3794.
Heinrich MC, et al: Inhibition of c-kit receptor tyrosine kinase activity by
STI 571, a selective tyrosine kinase inhibitor. Blood 2000, 96(3):925-32.
Buchdunger E, et al: Abl protein-tyrosine kinase inhibitor STI571 inhibits
in vitro signal transduction mediated by c-kit and platelet-derived
growth factor receptors. J Pharmacol Exp Ther 2000, 295(1):139-45.
Buchdunger E, O'Reilly T, Wood J: Pharmacology of imatinib (STI571).
Eur J Cancer 2002, 38(Suppl 5):528-36.

Hirai T, et al: PDGF receptor tyrosine kinase inhibitor suppresses
mesangial cell proliferation involving STAT3 activation. Clin Exp Immunol
2006, 144(2):353-61.

Soria A, et al: The effect of imatinib (Glivec) on scleroderma and normal
dermal fibroblasts: a preclinical study. Dermatology 2008, 216(2):109-17.
Distler JH, et al: Imatinib mesylate reduces production of extracellular
matrix and prevents development of experimental dermal fibrosis.
Arthritis Rheum 2007, 56(1):311-22.

Perros F, et al: Platelet-derived growth factor expression and function in
idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med
2008, 178(1):81-8.

Hammacher A, et al: Isoform-specific induction of actin reorganization by
platelet-derived growth factor suggests that the functionally active
receptor is a dimer. EMBO J 1989, 8(9):2489-95.

Seifert RA, et al: Two different subunits associate to create isoform-
specific platelet-derived growth factor receptors. J Biol Chem 1989,
264(15):8771-8.

Hart CE, et al: Two classes of PDGF receptor recognize different isoforms
of PDGF. Science 1988, 240(4858):1529-31.

Fredriksson L, Li H, Eriksson U: The PDGF family: four gene products form
five dimeric isoforms. Cytokine Growth Factor Rev 2004, 15(4):197-204.
LaRochelle WJ, et al: PDGF-D, a new protease-activated growth factor. Nat
Cell Biol 2001, 3(5):517-21.

Soriano P: Abnormal kidney development and hematological disorders in
PDGF beta-receptor mutant mice. Genes Dev 1994, 8(16):1888-96.
Soriano P: The PDGF alpha receptor is required for neural crest cell
development and for normal patterning of the somites. Development
1997, 124(14):2691-700.

Orr-Urtreger A, et al: Developmental expression of the alpha receptor for
platelet-derived growth factor, which is deleted in the embryonic lethal
Patch mutation. Development 1992, 115(1):289-303.

Gao Z, et al- Deletion of the PDGFR-beta gene affects key fibroblast
functions important for wound healing. J Biol Chem 2005,
280(10):9375-89.

Ronnstrand L, et al: Identification of two C-terminal autophosphorylation
sites in the PDGF beta-receptor: involvement in the interaction with
phospholipase C-gamma. EMBO J 1992, 11(11):3911-9.

Yokote K, et al: Structural determinants in the platelet-derived growth
factor alpha-receptor implicated in modulation of chemotaxis.

J Biol Chem 1996, 271(9):5101-11.

Page 9 of 9

39, Yu JC, et al: Tyrosine mutations within the alpha platelet-derived growth
factor receptor kinase insert domain abrogate receptor-associated
phosphatidylinositol-3 kinase activity without affecting mitogenic or
chemotactic signal transduction. Mol Cell Biol 1991, 11(7):3780-5.

40. Ingram JL, et al: IL-13 and IL-1beta promote lung fibroblast growth
through coordinated up-regulation of PDGF-AA and PDGF-Ralpha.

FASEB J 2004, 18(10):1132-4.

41, Baroni SS, et al- Stimulatory autoantibodies to the PDGF receptor in
systemic sclerosis. N Engl J Med 2006, 354(25):2667-76.

42. Abraham DJ, et al: Tumor necrosis factor alpha suppresses the induction
of connective tissue growth factor by transforming growth factor-beta in
normal and scleroderma fibroblasts. J Biol Chem 2000, 275(20):15220-5.

43, Shi-Wen X, et a: Endogenous endothelin-1 signaling contributes to type |
collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biol 2007,
26(8):625-32.

44, Dooley A, et al: Modulation of collagen type |, fibronectin and dermal
fibroblast function and activity, in systemic sclerosis by the antioxidant
epigallocatechin-3-gallate. Rheumatology (Oxford) 2010, 49(11):2024-36.

doi:10.1186/1755-1536-6-10

Cite this article as: Donovan et al.: Platelet-derived growth factor alpha
and beta receptors have overlapping functional activities towards
fibroblasts. Fibrogenesis & Tissue Repair 2013 6:10.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Phosphorylation of PDGFR by PDGFAA, BB, CC and DD
	Effect of blocking antibody on phosphorylation and signal transduction
	Effects of PDGFR neutralising antibodies on collagen gel contraction
	Effect of PDGFR neutralising antibodies on fibroblast migration

	Discussion
	Conclusions
	Methods
	Cell culture
	Treatment with neutralising antibodies
	Western blot analysis
	Migration assay
	Remodelling of collagen matrices
	Abbreviations

	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

